

Crowd Development
Thomas D. LaToza1, W. Ben Towne2, André van der Hoek1, and James D. Herbsleb2

1 University of California, Irvine 2 Carnegie Mellon University

How do you create high-quality software with transient,
potentially malicious workers of varying expertise?

What if a large application could be built in a day?

What if grandma or grandpa's hobby was
writing software?

Translate the web… by
learning a language

Non-expert players solved a
decade long heard research
problem in 10 days.

h"p://sdcl.ics.uci.edu/research/code1orb/33
So5ware3Design3and3
Collabora;on3Laboratory3SDCL3

• secs - mins
• modular
• self-describing
• may fail
• recursively spawned

push & pull information over the dependency graph
iterative critique - many solutions, critique, recombine, iterate
collective decision making - StackOverflow for a project

redundancy, reviews, reputation

apportion value created back to contributors
• function reused
• function passes all its tests
• user story completed quickly

task

microtasks

Increasing parallelism reduces time to market

reducing range of knowledge required enables
 specialization through editors or in expertise
• some artifacts edited by EUP w/ EUP tools
• expert architect contributes for a few

microtasks
• workers become expert in sort routines

What if you could navigate to a site and start contributing?

How can a crowd create a design with conceptual integrity?

capture the "long tail" of contribution by
lowering joining costs

• just start working
• stop when you're bored
• skip what you don't want to do

What if software development felt like a game?

optimal challenge + social might make
building software more fun & educational

• earn as many points as you can
• level up to harder work
• cash in points for prizes
• watch how your friends are doing
• compete in pair programming

Code
with

Friends

How can work be effectively allocated to a crowd?

worker characteristics, task characteristics

best available match vs. wait for better match

• experience w/ relevant artifacts
• skill in type of programming
• reputation / trust
• overall knowledge of system

